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Extensive series of relativistic coupled cluster calculations of the electric field gradient at N
in NP has been carried out. The accurate value of the calculated electric field gradient, com-
bined with the highly accurate experimental value of the nuclear quadrupole coupling con-
stant for the 14N nucleus, gives the ‘molecular’ value of the nuclear quadrupole moment
Q(14N) = 20.46 mb. This result perfectly agrees with the value (20.44 ± 0.03 mb) determined
from atomic calculations and atomic spectra. The present study involves also extensive in-
vestigations of basis sets which must be used in highly accurate calculations of electric field
gradients.
Keywords: Nuclear quadrupole moment of 14N; Electric field gradients; Basis sets; Infinite-
order scalar relativistic method; Coupled cluster calculations; CCSD(T); Ab initio; Gaussian.

In atoms, molecules, and in the solid state the interaction between quadru-
polar nuclei and the electron density distribution1–3 leads to observable
spectroscopic effects which can be seen in the form of splittings of lines in
atomic spectra4 and splittings in rotational spectra of molecules3. The same
interaction is responsible for the quadrupole resonance spectra5 and affects
the Mössbauer spectra6 of solids.

The form of the interaction between the nuclear quadrupole and the dis-
tribution of the electron density is known3,7–9 and to a good approximation
the experimental data can be expressed as linear functions of the nuclear
quadrupole moment Q(X) of the quadrupolar nucleus X and the electron
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density gradient qαβ(X) at X. The latter can be calculated by using different
electronic structure theory methods. Hence, by combining the experimen-
tal and theoretical results one can obtain nuclear quadrupole moments,
which, according to the source of the experimental data, are referred to as
the ‘atomic’, ‘molecular’, and ‘solid state’ values.

From the computational point of view the highest accuracy of the electric
field gradients can be achieved in atomic calculations8,10–14. The spherical
symmetry greatly simplifies the computational problems and permits to go
much beyond the present accuracy limits in molecular calculations. How-
ever, the atomic nuclear quadrupole coupling constants (B) are usually
known with rather poor accuracy because of the significant line broadening
and the high accuracy of the theoretical data for qαβ(X) may not be very
helpful.

In contrast to the atomic spectral data the quadrupole coupling constants
(νQ(X)) of the nucleus X determined from molecular rotational spectra are
usually of very high accuracy3,5,16. In order to profit from this advantage of
the molecular microwave spectra one needs, however, to calculate the
qαβ(X) values with a very high accuracy. Sufficiently accurate calculations of
electric field gradients may represent a formidable task already for diato-
mic molecules. In spite of this, the ‘molecular’ route to nuclear quadrupole
moments proved to be very successful8,17–42. Over the past two decades ac-
curate ‘molecular’ values of nuclear quadrupole moments have been de-
rived as documented by the recent review by Pyykkö43. The accuracy of the
‘molecular’ data for nuclear quadrupole moments is surprisingly high and
has led to the resolution of disagreements between the data obtained from
other sources, e.g. from muonic experiments or from nuclear theory calcu-
lations17,20–22,43.

In most recent atomic calculations8,11–14,44–48 the accuracy of the calcu-
lated electric field gradients was extensively investigated with respect to
both the basis set extension and the level of the electron correlation treat-
ment. Hence, the calculated atomic electric field gradients are frequently
close to their exact values. With the spectroscopic B values of sufficiently
high accuracy they could have been used to obtain the most accurate val-
ues of nuclear quadrupole moments. This is well exemplified by calcula-
tions of the electric field gradient in different spectroscopic states of the
nitrogen atom and its ions11 which have given one of the most accurate
values of the nuclear quadrupole moment of 14N, Q(14N) = 20.44 ± 0.03 mb
(1 mb = 10–3 b = 10–31 m2). The estimated error limit of ±0.15% is quite im-
pressive. Moreover, the major part of this error (±0.024 mb) comes from the
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inaccuracy of the experimental value of B in 14N2+(2p1,2P3/2) 11,43. Even for
small and light diatomic molecules reaching this level of accuracy in molec-
ular calculations is very demanding.

In molecular calculations the accuracy tests are carried out usually in a
rather limited way22,42. As a rule calculations of electric field gradients in
molecules are performed for a series of related molecules and mutual agree-
ment between the nuclear quadrupoles derived from these data is regarded
as a sign of the achieved accuracy. This works quite well and the values of Q
derived from the data for different molecules have error bars of the order of
1–2%. However, this method is based mostly on the accumulated experi-
ence and is prone to several uncertainties. These uncertainties refer to both
the basis set limit and the level of electron correlation treatment. The lat-
ter is usually assumed to be well enough accounted for at the level of the
CCSD(T) approximation49,50. It appears that no extensive, exhausting, and
systematic study of the basis set dependence of the calculated molecular
electric field gradients has been carried out so far.

In the present paper the determination of the ‘molecular’ value of the
quadrupole moment of the 14N nucleus is considered as a case study. First,
highly accurate equilibrium value of the quadrupole coupling constant
νQ(14N) is available for the NP molecule51 and can be used to determine the
‘molecular’ value of Q(14N) and to compare it with the ‘atomic’ result of
Tokman et al.11. The assumed goal is to obtain the ‘molecular’ result of
comparable accuracy as that achieved in atomic calculations. Since the
experimental value of νQ(14N) in NP at the equilibrium bond distance
(–5.1728 ± 0.0005 MHz) carries the error of the order of 0.01% (ref.51) the
molecular value of Q(14N) will essentially depend only on the quality of cal-
culations of the zz component of the electric field gradient, qzz = q, at the
nitrogen nucleus. Upon expressing Q(14N) (in mb) in terms of molecular
data3
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where the quadrupole coupling constant is in MHz and q in a.u. of the elec-
tric field gradient, one finds that the expected value of the quadrupole mo-
ment of 14N (20.44 mb) requires that the value of q should be of the order
of 1 a.u. Hence, to match in molecular calculations the ±0.03 mb (±0.15%)
error of the ‘atomic’ value of Q(14N) means that q at N in NP must be calcu-
lated with the absolute accuracy of the order of at least 10–3 a.u. In spite of
NP being a small diatomic molecule, this is quite a challenging task.
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In the next section a brief summary of the computational methods used
to calculate the electric field gradient at N is presented. All calculations re-
ported in this paper have been carried out within the so-called algebraic
approximation, i.e. by using some truncated sets of (Gaussian) basis func-
tions. Then, the choice and a systematic extension scheme of these basis
sets, are described. The subsequent section reports on the calculated values
of q at N in NP for a variety of systematically extended basis sets. In the last
section of this paper the calculated value of q, which is expected to match
the above-mentioned accuracy criteria, is used to obtain the ‘molecular’
value of Q(14N). A summary of our findings and conclusions follow.

COMPUTATIONAL METHODOLOGY

The computational methodology used in our investigations is to some ex-
tent based on our earlier experiences and certain well founded assumptions
concerning the choice of computational methods. The electric field gradi-
ent at the nitrogen nucleus is first expressed as a sum of the electronic (qel)
and nuclear (qnucl) contributions.

q = qel + qnucl (2)

Consistently with the fact that the value of νQ(14N) reported by Raymonda
and Klemperer51 corresponds to the equilibrium N–P bond distance (Re), we
choose in all our calculations the experimental value of Re = 1.4908665 Å ≈
2.817330 a.u.52. This leads to the nuclear contribution qnucl = 1.341554 a.u.
which is used in all reported total values of q.

The electronic part of Eq. (2) is traditionally partitioned between its
SCF HF (qHF) and electron correlation (qcorr,M) contributions

qel = qHF + qcorr,M (3)

where the latter is calculated by some method M. For the method M we
have chosen the coupled cluster (CC) approximation with iterative solution
(CCSD)49 for T1 and T2 amplitudes and the perturbation treatment of T3.
The method, known as the CCSD(T) approach50, is very successful in calcu-
lations of the electron correlation contribution to atomic and molecular en-
ergies and its results for closed-shell and high-spin open-shell53–56 systems
come close to those of the full configuration interaction (FCI) method. The
CCSD(T) scheme represents presumably the highest level of approximation
which can be routinely used for many-electron systems with the SCF HF (or
ROHF) single-configuration reference state. Its very successful applications,
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in particular to systems which are well represented by a single electronic
configuration, are legion57.

Obviously, there will be always some uncertainty concerning the role of
the higher-order correlation contributions to both energies and electric
field gradients. The FCI calculations with basis sets of the size used in our
investigations are essentially impossible. An idea about the importance of
different cluster contributions can be gained by comparing the CCSD and
CCSD(T) results, i.e. by partitioning the total CCSD(T) correlation correc-
tion, qcorr,CCSD(T), into CCSD and T3 contributions.

q corr,CCSD(T) = q corr,CCSD + q Tcorr, 3
(4)

However, one should be aware that a small contribution due to non-
iterative treatment of T3 does not necessarily mean that the iterative T3 and
higher-order Tn terms will be negligible.

The investigation of the pattern of convergence of the correlation contri-
bution to q can be additionally extended by including also the results of the
crudest approximation by the second-order perturbation theory (MP2). Al-
though the MP2 correlation corrections, qcorr,MP2, are not expected to be of
very high accuracy, they may add to the discussion of the saturation of the
electron correlation contribution to q by the results of the CCSD(T) ap-
proach. Under the circumstances, the most important test of the accuracy
of the CCSD(T) treatment of the electron correlation contribution to q will
follow from the comparison of our final ‘molecular’ results for Q(14N) with
those obtained in atomic calculations11. The latter are likely to be accurate
within the reported error bars of 0.03 mb.

For systems with a large number of electrons usually only some part of
them is considered at the highest possible level of approximation with re-
spect to the electron correlation effects. The so-called core shells are either
frozen or their contribution is estimated by using inexpensive low-level
methods (MP2). Since the system studied in this paper is relatively small, all
correlated-level calculations include the electron correlation contribution
due to all 22 electrons of the NP molecule. Additionally it has been found
that removing a certain number of the high-energy virtual orbitals does not
affect the calculated values of q within the predefined numerical accuracy.
All virtual orbitals with orbital energies higher than 103 a.u. have been re-
moved in all CC calculations reported in this paper.

The CC methods used in this study are non-variational. Hence, the calcu-
lation of the electron correlation contribution to q involves the evaluation
of the corresponding full-energy derivatives58,59 with respect to the appro-
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priately chosen strength (λ) of the external perturbation. These can be ob-
tained either by using the formulae of the analytic perturbation theory57 or
by the numerical differentiation of λ-dependent energies. The latter are ob-
tained in calculations with the core hamiltonian supplemented by the λ $q
term, where $q is the one electron operator of the zz component of the elec-
tric field gradient and λ is a numerical parameter which defines the field
gradient strength. In our nonrelativistic calculations we follow this purely
numerical method with the value of λ equal to ±0.00001 a.u. The selection
of this numerical parameter of the finite perturbation scheme was estab-
lished by the comparison of the expectation values and numerical deriva-
tives obtained at the level of the SCF HF approximation. If the numerical
derivatives were exact, the two results would be identical by virtue of the
Hellmann–Feynman theorem. With the present choice of λ the numerical
energy derivatives are accurate within at least 10–4 a.u.

Although the NP molecule is built of relatively light atoms and most of
its valence-determined properties would hardly show any significant contri-
bution due to relativistic effects60,61, the electric field gradients are usually
more demanding62,63. The electric field gradient operator assumes large val-
ues in the vicinity of the nucleus, i.e., in those regions of the electron den-
sity distribution where the relativistic effects are most important. Hence,
taking into account the high accuracy required in present calculations, the
evaluation of the relativistic effect on the electric field gradient at nitrogen
is at least desirable.

The major part of calculations presented in this paper has been carried
out in the framework of the nonrelativistic theory. At this level the validity
of several assumptions has been established and only a limited series of cal-
culations has been performed including the relativistic contributions to the
molecular hamiltonian. All relativistic calculations correspond to the fully
decoupled infinite-order two-component (IOTC) theory in the so-called
spin-free form64–67. This method is the extension64,67 of the Douglas–Kroll
approximation68 to infinite order with respect to the fine structure constant
(or alternatively external potential) and has been shown66,67 to reproduce
the results of the four-component Dirac theory with arbitrarily high accu-
racy. The computational implementation64,65 of IOTC is based on the ap-
proximate resolution of identity introduced by Hess69–72.

One of the problems arising with the use of IOTC is the so-called change
of picture of all operators whose matrix elements are to be calculated73,74,76.
This problem is by no means associated43 with possible approximations
which are usually introduced on passing from the four-component to two-
component methods. The transition from the four-component formalism
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to two-component methods75, and also to the exact IOTC formalism64, is
accomplished by a block-diagonalizing unitary transformation of the Dirac
hamiltonian. Thus, all operators defined in what is called the Dirac picture
need to be transformed accordingly74.

To avoid the explicit transformation of the property operators, several
purely numerical methods have been developed27,28,63,73,76–78. In all calcula-
tions reported in this paper we use the numerical method based on the
so-called shifted nucleus (SN) model76,77. In comparison with the original
point charge nuclear quadrupole moment (PCNQM) model proposed by
Schwerdtfeger et al.27,28, the SN model requires only one numerical parame-
ter77 and therefore offers certain computational advantages. Since the same
method can be used in nonrelativistic calculations of electric field gradi-
ents, the numerical accuracy of the parametrized SN model can easily be
checked. In present calculations the shift parameter (d) values77, which
have been found to be suitable for achieving the purely numerical accuracy
of the calculated relativistic IOTC electric field gradient at N through at
least 4 decimals, is chosen as 10–4 a.u.

The last computational detail to be discussed is the choice of the basis
set. All calculations performed within this study have been carried out with
large, systematically extended, Gaussian basis sets. This has required exten-
sive numerical testing whose purpose was to establish some general rules
concerning the basis set choice for calculations of electric field gradients in
molecules. These computational aspects of the present study will be de-
scribed and discussed in the next section. Let us also add that the software
used in our calculations is Molcas 5.4 and Molcas 6.5 packages of electronic
structure programs79,80 which were adapted to include the spin-free IOTC
scheme72.

THE BASIS SET CHOICE

Most of the current experience concerning the basis set choice for calcula-
tions of electric field gradients in molecules22–24,26,27,29–35,37,40–42 corresponds
to accuracy requirements, which are much lower than those targeted in the
present study. The appropriate choice of the Gaussian basis set for highly
accurate calculations of molecular electric field gradients is therefore one of
the most important issues.

Following our earlier calculations the initial basis sets of N and P are the
well-tempered sets by Huzinaga and Klobukowski81. To increase the flexibil-
ity of the description of the valence shell the original (14s10p;15ζ) set for N
has been extended to 16ζ set with the additional exponent ζ16 determined
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from the assumed geometric progression (ζ16 = ζ15
2 /ζ14 = 0.0227687). Simul-

taneously the s and p subsets have been enlarged to (16s11p;16ζ). This ex-
tended set was further augmented with 5 d-type functions to give the
smallest (16s11p5d;16ζ) basis set for nitrogen which is hereafter labeled as
basis A. The ranges of orbital exponents for s, p, and d subsets are shown in
Table I.

The (17s13p;18ζ) set81 for phosphorus was similarly extended by one
Gaussian exponent ζ19 = ζ18

2 /ζ17 = 0.01899554) and enlarged to
(19s14p;19ζ). This intermediate set has been used to obtain the smallest
phosphorus basis set (basis A) of the form (19s14p7d;19ζ). The ranges of or-
bital exponents are shown in Table II. Basis sets A for nitrogen and phos-
phorus have been used in several exploratory calculations to determine
their further extension.

Most of the contribution to the electric field gradient comes from valence
p-type orbitals. However, the form of the electric field gradient operator in-
dicates that f-type functions will be used for the first-order polarization82–84
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TABLE I
Extended well-tempered 16ζ Gaussian basis sets used for nitrogen. Glossary of the basis set
labels

Basic set Label

Range of orbital exponentsa

is–js ip–jp id–jd if–jf

(16s11p5d) A 1–16 6–16 11–15

(16s11p6d5f) B 1–16 6–16 11–16 11–15

(16s12p7d6f) C 1–16 5–16 10–16 10–15

(16s13p8d7f) D 1–16 4–16 9–16 9–15

(16s14p9d8f) E 1–16 3–16 8–16 8–15

(16s15p10d9f) F 1–16 2–16 7–16 7–15

(16s15p11d10f) G 1–16 2–16 6–16 6–15

(16s15p12d11f) H 1–16 2–16 5–16 5–15

(16s15p10d9f) G1 1–16 2–16 6–15 6–14

(16s15p9d8f) G2 1–16 2–16 6–14 6–13

(16s15p9d7f) G3 1–16 2–16 6–13 6–12

a ix–jx determines the range ζi–ζ j for x = s, p, d, and f primitive Gaussian orbitals.



contributions. The g-type and higher angular momentum functions are of
negligible importance for N and P. Following this observation the B basis
sets for nitrogen and phosphorus, (16s11p6d5f;16ζ) and (19s14p9d8f;19ζ),
respectively, have been generated with the simultaneous extension of the
number of d-type functions. For the exponents of both d- and f-type primi-
tive functions it was initially assumed that they cover the range of the larg-
est contribution in valence atomic orbitals of nitrogen and phosphorus.
Further extension has been carried out by adding high-exponent primitive
Gaussians to p, d, and f subsets of the basis sets B. The corresponding de-
tails are shown in Tables I and II. In the presentation of our results for the
electric field gradient at nitrogen we shall refer to molecular basis sets by
the symbol XY, where X = A, B, ... is the basis set used for nitrogen, and Y =
A, B, C, ... denotes the basis set used for phosphorus.

After establishing certain regularities in the calculated values of the elec-
tric field gradient, we have also investigated the possibility of some reduc-
tion of the large basis sets of nitrogen and phosphorus by deleting the most
diffuse d and f basis functions. The G basis set of nitrogen and B basis set of
phosphorus are used to build the reference (GB) molecular basis set which
was afterwards systematically truncated. The corresponding truncated
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TABLE II
Extended well-tempered 19ζ Gaussian basis sets used for phosphorus. Glossary of the basis
set labels

Basic set Label

Range of orbital exponentsa

is–js ip–jp id–jd if–jf

(19s14p7d) A 1–19 6–19 13–19

(19s14p9d8f) B 1–19 6–19 11–19 11–18

(19s15p10d9f) C 1–19 5–19 10–19 10–18

(19s16p11d10f) D 1–19 4–19 9–19 9–18

(19s17p12d11f) E 1–19 3–19 8–19 8–18

(19s14p8d7f) B1 1–19 6–19 11–18 11–17

(19s14p7d6f) B2 1–19 6–19 11–17 11–16

(19s14p6d5f) B3 1–19 6–19 11–16 11–15

(19s14p5d4f) B4 1–19 6–19 11–15 11–14

a ix–jx determines the range ζi–ζ j for x = s, p, d, and f primitive Gaussian orbitals.



G-type basis sets of nitrogen are referred to as G1, G2, and G3 (Table I). In a
similar way the reduced B-type sets (B1, B2, B3, and B4) were generated for
phosphorus (Table II). These numerical experiments, which lead to signifi-
cant reduction of the total molecular basis set, can be useful in devising ap-
propriate basis sets for calculations of electric field gradients in other
molecules.

Let us also note that all basis sets used in this study are composed of
primitive uncontracted (spherical) Gaussian functions. It has been found
(vide infra) that the high-exponent basis functions are vital for achieving
high accuracy of the calculated electric field gradients. Also, at variance
with the experience based on calculations of several other molecular elec-
tric properties, like dipole moments or dipole polarizabilities, these basis
functions need to have high flexibility and should be left uncontracted.

RESULTS AND DISCUSSION

The primary aim of investigations presented in this paper is the accurate
calculation of the electric field gradient at the nitrogen nucleus in the NP
molecule. Then, the calculated value of q will be used to determine the
‘molecular’ result for Q(14N). The accurate value of the latter is, however, al-
ready known with a very high accuracy11,43. This permits to use the NP
molecule simultaneously as a playground for testing different approxima-
tions used in molecular calculations of the electric field gradient.

The most important is the convergence of q and its components (Eq. (3))
with respect to the basis set extension and the corresponding results for se-
lected combinations of the nitrogen and phosphorus basis sets are pre-
sented in Table III. These are the electronic SCF HF results (qHF), the
electron correlation corrections from the CCSD method (qcorr,CCSD), and
electron correlation contributions due to triple excitations (q Tcorr, 3

). The
sum of the latter two makes the total electron correlation correction of the
CCSD(T) method (qcorr,CCSD(T)) which is also displayed in Table III. Accord-
ing to Eq. (2) the total value of the electric field gradient at N includes the
nuclear contribution, qnucl ≈ 1.3416 a.u.

The data of Table III are arranged in such a way that they show the con-
vergence pattern for the selected basis set on N and the extension of the
phosphorus basis set. One finds that the calculated value of q is not highly
sensitive to the phosphorus basis set. For each selected basis set on N the
extension of the phosphorus basis set beyond the set B leads to negligible
(less than 10–4 a.u.) changes in both SCF HF and electron correlation contri-
butions to q. One can conclude that the phosphorus atom in NP plays the
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TABLE III
Basis set dependence of the calculated data for the electric field gradient (q, in a.u.) at N in
the NP molecule. The study of the dependence of q at N on the spectator atom (P) basis set.
All data correspond to the experimental value of the equilibrium bond distance, Re ≈
2.817330 a.u.

Basis set
on N

Basis set
on P

qHF qcorr,CCSD qcorr,T3
qcorr,CCSD(T) qa

A A –2.7312 0.2596 0.0507 0.3103 –1.0793

B A –2.7479 0.2638 0.0529 0.3167 –1.0897

B B –2.7524 0.2516 0.0521 0.3037 –1.1072

C A –2.7385 0.2569 0.0535 0.3104 –1.0865

C B –2.7415 0.2447 0.0526 0.2973 –1.1026

C C –2.7416 0.2447 0.0526 0.2973 –1.1027

D A –2.7198 0.2506 0.0529 0.3036 –1.0747

D B –2.7215 0.2388 0.0521 0.2909 –1.0891

D C –2.7215 0.2388 0.0521 0.2909 –1.0891

D D –2.7215 0.2388 0.0521 0.2909 –1.0891

E A –2.7075 0.2485 0.0527 0.3012 –1.0647

E B –2.7114 0.2367 0.0518 0.2885 –1.0813

E C –2.7115 0.2367 0.0518 0.2885 –1.0814

E D –2.7115 0.2367 0.0518 0.2885 –1.0814

E E –2.7115 0.2367 0.0518 0.2885 –1.0814

F A –2.7072 0.2478 0.0526 0.3004 –1.0652

F B –2.7088 0.2361 0.0517 0.2878 –1.0794

F C –2.7088 0.2360 0.0517 0.2878 –1.0795

F D –2.7088 0.2360 0.0517 0.2878 –1.0795

G A –2.7045 0.2478 0.0526 0.3004 –1.0625

G B –2.7080 0.2360 0.0517 0.2877 –1.0788

G C –2.7081 0.2360 0.0517 0.2877 –1.0788

H B –2.7079 0.2359 0.0517 0.2876 –1.0787

H C –2.7079 0.2359 0.0517 0.2876 –1.0787

a The total value of q which includes the nuclear contribution 1.3416 a.u.



role of a spectator atom whose effect can be well enough described by basis
sets of a moderate size.

To show the convergence pattern with respect to the nitrogen basis set
we have selected two basis sets of phosphorus, B and C, and displayed in
Table IV the dependence of q on the basis set on N. Although these are es-
sentially the same data as those already presented in Table III they point to
other features of the convergence of q and its components. First, the data
calculated with certain basis X of N are practically the same for B and C sets
of the spectator atom. The moderately large basis set B on phosphorus leads
to sufficiently accurate results. These, however, significantly depend on the
nitrogen basis set. Within the present limits of accuracy one would have to
use at least the FB basis set.

One should also note that the electron correlation contribution to q
converges faster than the SCF HF value. Hence, the basis set choice can be
made at the level of inexpensive one-electron calculations. This observation
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TABLE IV
Basis set dependence of the calculated data for the electric field gradient (q, in a.u.) at N in
the NP molecule. The study of the dependence of q at N on the nitrogen basis sets for B and
C basis sets of phosphorus. All data correspond to the experimental value of the equilibrium
bond distance, Re ≈ 2.817330 a.u.

Basis set
on N

Basis set
on P

qHF qcorr,CCSD qcorr,T3
qcorr,CCSD(T) qa

B B –2.7524 0.2516 0.0521 0.3037 –1.1072

C B –2.7415 0.2447 0.0526 0.2973 –1.1026

D B –2.7215 0.2388 0.0521 0.2909 –1.0891

E B –2.7114 0.2367 0.0518 0.2885 –1.0813

F B –2.7088 0.2361 0.0517 0.2878 –1.0794

G B –2.7080 0.2360 0.0517 0.2877 –1.0788

H B –2.7079 0.2359 0.0517 0.2876 –1.0787

C C –2.7416 0.2447 0.0526 0.2973 –1.1027

D C –2.7215 0.2388 0.0521 0.2909 –1.0891

E C –2.7115 0.2367 0.0518 0.2885 –1.0814

F C –2.7088 0.2360 0.0517 0.2878 –1.0795

G C –2.7081 0.2360 0.0517 0.2877 –1.0788

H C –2.7079 0.2359 0.0517 0.2876 –1.0787

a The total value of q which includes the nuclear contribution 1.3416 a.u.



will be of certain help in the case of systems with a large number of elec-
trons. However, one finds that in general very large basis sets need to be
used in accurate calculations of electric field gradients. Although the major
contribution to the value of q at the given nucleus comes from the asym-
metry in the valence region, the asymmetry in the core region is by no
means negligible. To describe it properly one needs basis sets with very
high exponents in the polarization set.

The basis sets used so far were originally modelled on those used to calcu-
late valence properties of molecules, e.g., dipole moments and dipole
polarizabilities. The accuracy of calculations of these properties is primarily
determined by the quality of the wave function in the valence region.
Then, the focus is obviously on the diffuse part of the wave function and
the low-exponent polarization functions are of utmost importance84. The
form of the field gradient operator suggests that in calculations of its expec-
tation values the diffuseness of basis sets may be less important. Since the
basis sets of the size used in the present study have a rather limited area of
applicability in molecular calculations, any possibility of their reduction is
worth considering. This problem is illustrated here by the study of the ef-
fect of different truncations of the GB basis set (see Tables I and II).

We have already found that the description of the region of the electron
density distribution due to the spectator atom is much less demanding
than that of the region close to the nucleus at which the electric field gradi-
ent is to be calculated. One may also expect that very diffuse components
of the polarization subsets for the spectator atom can be to some extent
truncated without significant changes in the calculated values of q at the
nitrogen. This is illustrated by the data of Table V for a series of GBi, i = 1,
2, 3, 4, basis sets with systematically removed diffuse polarization functions
on phosphorus (see Table II). One can see that removing up to three most
diffuse d and f functions has hardly any effect on the value of q at nitrogen.
This means that the GB3 basis set offers essentially the same accuracy as the
GB set which comprises 36 more Gaussian functions.

The second series of calculations corresponds to the study of the effect of
the basis set truncation on the nitrogen atom. For this purpose we have sys-
tematically removed the most diffuse d and f functions on nitrogen (nitro-
gen basis sets G1, G2, and G3, see Table I) in the GB3 molecular set.
According to the data of Table V the G3B3 set shows some deterioration,
though still generally acceptable, of the calculated value of q. In compari-
son with the value of q obtained with the full GB set, this deterioration
amounts to only about 0.3%. In terms of the total number of basis func-
tions the G3B3 set is by 72 (spherical) Gaussian functions smaller than the
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reference set GB. One should also note that the deterioration of the SCF HF
data approximately parallels that of the correlation contributions to q. This
suggests that quite a part of the basis set generation can be carried out at
the level of the inexpensive one-electron approximation.

The results of numerical experiments shown in Table V are presented
rather for the purpose of finding some more general rules for the basis set
generation for other molecules. With the present goal to obtain the highly
accurate value of q at nitrogen and to establish presumably the best ‘molec-
ular’ result for Q(14N) we shall consider the calculated data for the largest
basis set HC. At the level of the nonrelativistic CCSD(T) approximation, the
corresponding results appear to converge to at least three decimals. The er-
ror in the calculated nonrelativistic CCSD(T) should be therefore less than
0.1%. This is approximately the magnitude of the relativistic contribution
to electric field gradients in different states of N2+ and N+ estimated by
Tokman et al.11 by using a multiplicative correction factor. In spite of the
smallness of the relativistic contribution to q, the high accuracy of present
calculations requires that it should be included as well.
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TABLE V
Basis set dependence of the calculated data for the electric field gradient (q, in a.u.) at N in
the NP molecule. The study of the effect of the truncation of the low-exponent part of basis
sets on N and P. All data correspond to the experimental value of the equilibrium bond dis-
tance, Re ≈ 2.817330 a.u.

Basis set
on N

Basis set
on P

qHF qcorr,CCSD qcorr,T3
qcorr,CCSD(T) qa

G B –2.7080 0.2360 0.0517 0.2877 –1.0788

G B1 –2.7080 0.2360 0.0517 0.2877 –1.0788

G B2 –2.7080 0.2360 0.0517 0.2877 –1.0788

G B3 –2.7081 0.2367 0.0518 0.2884 –1.0781

G B4 –2.7084 0.2367 0.0522 0.2989 –1.0671

G B3 –2.7081 0.2367 0.0518 0.2884 –1.0781

G1 B3 –2.7081 0.2367 0.0517 0.2884 –1.0781

G2 B3 –2.7081 0.2371 0.0518 0.2889 –1.0776

G3 B3 –2.7077 0.2386 0.0518 0.2904 –1.0757

a The total value of q which includes the nuclear contribution 1.3416 a.u.



The scalar relativistic IOTC calculations have been carried out for four
large basis sets GB, GC, HB, HC and the corresponding results are displayed
in Table VI. Owing to the method used to calculate the IOTC electric field
gradient (the SN model)76,77, the results presented in Table VI include the
change-of-picture contribution35,74 to the expectation value of the electric
field gradient operator.

The relativistic effect on the electric field gradient at N in NP is obviously
small, though not totally negligible with the present accuracy require-
ments. The scalar relativistic contribution to q amounts to +0.0025 a.u. and
makes about 0.2% of the total value of the electric field gradient at nitro-
gen. Most of it is accounted for at the level of the SCF HF IOTC approxima-
tion. The relativistic effect on the electron correlation contribution is
negligible. The study of the basis sets dependence of the relativistic contri-
bution to q shows that all four basis sets lead to essentially the same results.
Upon including the scalar relativistic effect we finally obtain the most accu-
rate CCSD(T) IOTC result of this paper q = –1.0762 a.u., which can be used
to calculate the ‘molecular’ value of Q(14N).
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TABLE VI
Basis set dependence of relativistic IOTC results for the electric field gradient (q, in a.u.) at N
in the NP molecule at the experimental equilibrium bond distance, Re ≈ 2.817330 a.u.

Basis set
on N

Basis set
on P

qHF qcorr,CCSD qcorr,T3
qcorr,CCSD(T) qa

Relativistic corrections

G B 0.0022 0.0002 0.0001 0.0003 0.0026

G C 0.0023 0.0002 0.0001 0.0003 0.0026

H B 0.0022 0.0002 0.0001 0.0003 0.0025

H C 0.0022 0.0002 0.0001 0.0003 0.0025

Total IOTC values

G B –2.7058 0.2362 0.0518 0.2880 –1.0762

G C –2.7058 0.2362 0.0518 0.2880 –1.0762

H B –2.7057 0.2361 0.0518 0.2879 –1.0762

H C –2.7057 0.2361 0.0518 0.2879 –1.0762

a The total value of q which includes the nuclear contribution 1.3416 a.u.



CONCLUSIONS

The most accurate value of q obtained in this paper (q = –1.0762 a.u.), which
follows from CCSD(T) IOTC calculations with the largest HC basis set, com-
bined with the experimental value51 of νQ(14N) = –5.1728 ± 0.0005 MHz,
leads to the ‘molecular’ result

Q(14N) = 20.46 mb (5)

which is perfectly within the error bars of the very accurate ‘atomic’ value
(20.44 ± 0.03 mb) of Tokman et al.11,43. Obviously, this perfect agreement is
to some extent due to favorable mutual cancellation of several (very) small
contributions which are neglected in our calculations and in those of
Tokman et al.11, like the effect of higher than non-iterative T3 clusters, the
spin–orbit contributions, or the basis set extension. To estimate the contri-
bution of all these terms to set up the error bars on the ‘molecular’ result
would be more a speculation and is avoided in the present case. One should
note that the error bars of the experimental value of νQ(14N) for the equilib-
rium bond distance, reported by Raymonda and Klemperer, are negligible.

The accuracy of the present ‘molecular’ value of Q(14N) should be rather
assessed on the basis of the agreement with the ′atomic′ result of Tokman et
al.11. Since these two results almost coincide with each other, the ‘molecu-
lar’ result confirms the conclusion by Pyykkö43 that ‘this value ... is proba-
bly the most accurately known Q for light elements’.

In addition to establishing the accurate ‘molecular’ value of Q(14N), the
present paper reports also on the extensive study of the basis set depend-
ence of the calculated values of the electric field gradient. Some of these re-
sults have a rather wide range of applicability and may by of use in other
calculations of electric field gradients.

First, it has been found that atomic basis sets on atoms linked to the (nu-
clear quadrupole) investigated centre are less important than the basis set
on the atom at which the field gradient is calculated. The moderately large
basis set B for phosphorus leads to saturation of the ‘spectator atom’ contri-
bution. This finding can be of particular usefulness in calculations of elec-
tric field gradients at light nuclei linked to heavy atoms. Our preliminary
studies of the electric field gradient at Cl in SbCl and at N in SbN show that
the concept of the ‘spectator atom’ basis set works very well85 and leads to
significant reduction of the total molecular basis set.

It has also been found that the atomic basis set for the ‘quadrupolar’
atomic centre needs to be carefully augmented with high-exponent polar-
ization functions. The rules established for valence properties do not apply
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in the case of electric field gradients. The consequence of this finding is
that one needs to use very large basis sets on the ‘quadrupolar’ centre. How-
ever, it has been simultaneously found that the diffuse part of the polariza-
tion subset used for the ‘quadrupolar’ centre and the spectator atom is less
significant. Several diffuse functions can be removed from atomic basis sets
without seriously affecting the calculated electric field gradient. Hence, the
extension in the high-exponent region will be partly compensated by the
reduction of the number of Gaussian polarization functions with very low
exponents. These findings give some guiding rules for the generation of ba-
sis sets for accurate calculations of electric field gradients in molecules.
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